|
Ez a szócikk vagy szakasz lektorálásra, tartalmi javításokra szorul. A felmerült kifogásokat a szócikk vitalapja részletezi (vagy extrém esetben a szócikk szövegében elhelyezett, kikommentelt szövegrészek). Ha nincs indoklás a vitalapon (vagy szerkesztési módban a szövegközben), bátran távolítsd el a sablont! Csak akkor tedd a lap tetejére ezt a sablont, ha az egész cikk megszövegezése hibás. Ha nem, az adott szakaszba tedd, így segítve a lektorok munkáját! |
George Boole, angol matematikus és filozófus által megalkotott Boole-algebra alapjait csak 1847 tavaszán fejtette ki a(z) Mathematical Analysis of Logic című írásban. Ezt a munkát tökéletlennek tekintette és a(z) "An Investigation of the Laws of Thought, on which are founded the Mathematical Theories of Logic and Probabilities" írásában dolgozta ki a végső formáját. Boole nem tekintette a logikát a matematika ágának, hanem rámutatott az alapvető hasonlóságra az algebrai szimbólumok és a véleménye szerint a logika leírásában használható szimbólumok között. Az ítélet állítást vagy predikátumot jelent. [1] Claude Shannon, közel 70 évvel később filozófia kutatása közben talált rá George Boole írásaira és implementálta az informatika és elektrotechnika világába a Boole-algebrát.
Néhány példa az ítéletek megfogalmazására, jelekkel való átírására és igazság-táblázataik felírására:
(A [valami] állítások tetszőlegesen implementált állítások, az állítások előtt és között található kulcsszavak segítenek felfedni a két vagy több állítás között lévő kapcsolatokat - relációkat.)
Konjunkció (Logikai "ÉS")
A
|
B
|
A ∧ B
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
Konjunkció esetén egyszerű megoldást biztosít, ha észben tartjuk, hogy "A ÉS B" esetén, akkor igaz a kimenetünk ha mindkét állítás, "A" és "B" is igaz.
Állítás (ítéletként megfogalmazva): "Vásárolt egy lakást és elköltözött". A: Vásárolt egy lakást B: elköltözött. Jelekkel: A ∧ B, Konjunkció jelenlétére mutató környezet: "[valami] és [valami]".
Diszjunkció (Logikai "VAGY")
A
|
B
|
A ∨ B
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
0
|
0
|
Diszjunkció esetén egyszerű megoldást biztosít, ha észben tartjuk, hogy "A VAGY B" esetén, akkor hamis a kimenetünk ha mindkét állítás, "A" és "B" is hamis.
Állítás (ítéletként megfogalmazva): "Keressen fel mobiltelefonon, vagy üzenetben." A: Keressen fel mobiltelefonon B: üzenetben. Jelekkel: A ∨ B, Diszjunkció jelenlétére mutató környezet: "[valami], vagy [valami]".
Implikáció
A
|
B
|
A → B
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
Implikáció esetén egyszerű megoldást biztosít, ha észben tartjuk, hogy "A IMPLIKÁCIÓ B" esetén, akkor hamis a kimenetünk ha az első állításunk "A" igaz de "B" hamis.
Állítás (ítéletként megfogalmazva): "Ha esik az eső, akkor az út vizes." A: esik az eső, B: az út vizes. Jelekkel: A → B, Implikáció jelenlétére mutató környezet: "Ha [valami], akkor [valami]".
Ekvivalencia
A
|
B
|
A ⇔ B
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
Ekvivalencia esetén egyszerű megoldást biztosít, ha észben tartjuk, hogy "A EKVIVALENCIA B" esetén, akkor igaz a kimenetünk ha az első állításunk "A" illetve "B" egyöntetűen igaz vagy hamis.
Állítás (ítéletként megfogalmazva): "Akkor és csak akkor megyek le az udvarra, ha esni fog az eső." A: Lemegyek az udvarra, B: esni fog az eső. Jelekkel: A ⇔ B, Ekvivalencia jelenlétére mutató környezet: "Akkor és csak akkor[valami], ha [valami]".
Megjegyzések
Jegyzetek
Források