Rieke-fém

Innen: Hungaropédia
Ugrás a navigációhozUgrás a kereséshez

Rieke-fém alatt a fémsókból alkálifémekkel kiredukált rendkívül reakcióképes fémporokat értjük. Nevüket Reuben D. Rieke után kapták, aki elsőként tanulmányozta és írta le ezeknek a fémeknek az előállítását. A módszerrel számos fém reakcióképessége megnövelhető, köztük például a Mg, Ca, Ti, Fe, Co, Ni, Cu, Zn és In, amelyeket ezentúl a Rieke-magnézium, Rieke-kalcium, stb. néven illetünk.

Reaktivitásában megnövelt Rieke-magnézium

Reakcióképességük annak köszönhető, hogy fajlagos felületük igen nagy, emellett meg vannak tisztítva a felületükön kialakuló és reakcióikat hátráltató oxidrétegtől. Szemcséi igen aprók, méretük 1-2 μm-től akár 0,1 μm-ig terjedhet. Egyes fémek, mint a réz vagy a nikkel, olyan finom kolloidális szemcsékként is jelen vannak, amelyek sem ülepítéssel, sem centrifugálással, sem pedig szűréssel nem vonhatók ki a fekete oldatból. A magnézium és a kobalt nagyobb részecskéket alkot, bár ezek főként a melléktermékként keletkező alkálifémsókat tartalmazzák, köztük a fém maga akár az előbbi példánál is kisebb.[1]

Előállítás

Általában az előállítandó fém vízmentes kloridsóját redukálják alkálifémekkel egy megfelelő oldószerben.[1] Például Rieke-magnézium előállítható, ha a magnézium-kloridot fémkáliummal redukáljuk.[2] MgCl2+2K2KCl+Mg Rieke eredetileg háromféle előállítási módot írt le:

  • Olvadt nátriummal vagy káliummal történő redukció olyan oldószerben, amelynek magasabb a forráspontja, mint a redukálófémek olvadáspontja, valamint képes a só egy részének feloldására. Egy javasolt párosítás volt például a kálium és tetrahidrofurán (THF), nátrium és 1,2-dimetoxietán, vagy az említett fémek benzolban, toluolban. Az exoterm reakció több órányi refluxálást igényel inert atmoszférában.[1]
  • Szilárd alkálifémekkel való redukálás katalitikus mennyiségű (5-10 mol%) elektronvivő anyag (pl. naftalin[1] vagy bifenil) jelenlétében.[3] Ebben a módszerben lítium is használható redukálószerként, emellett akár szobahőmérsékleten is végbemegy, ezáltal az elsőhöz képest kevésbé veszélyes és gyakran jobb minőségű porokat eredményez.[2]
  • Lítium helyett előzetesen elkészített lítium-naftalid[1] vagy lítium-bifenilid[3] használatával. Ez az eljárás akár még alacsonyabb hőmérsékleten is lejátszódik. Habár maga a reakció lassabb, a végeredmény még finomabb fémpor.

A keletkező alkálifém-kloridok kiválhatnak a fémekkel keverve. Ezek akár felhasználhatók együtt is, vagy megtisztíthatók a sók megfelelő oldószerrel való kimosásával.[1]

Felhasználás

Az összes Rieke-fém közül a Rieke-cink kapta a legnagyobb figyelmet annak köszönhetően, hogy a 2,5-dibrómtiofén polimerizációját elő tudja segíteni politiofénné.[4] Továbbá brómészterekkel reagáltatva cinkorganikus vegyületek előállítására használható, amik a Reformatsky-reakció fontos komponensei.[5] A Rieke-magnézium aril-halogenidekkel akár már −78 °C hőmérsékleten egyesülni tud, így gyakran meglepően jó szelektivitással juthatunk Grignard-reagensekhez.[6] Rieke-Mg segítségével lehetetlennek hitt Grignard-reagensekhez is juthatunk, például aril-fluoridokból vagy 2-klórnorbornánból.[2]

Története

A nagy reaktivitású fémek használata a szerves szintézisekhez az 1960-as években kezdett egyre inkább elterjedni. Az addig használt módszerek a fém elgőzölögtetésén alapultak, amelyhez komoly műszerekre volt szükség. Reuben D. Rieke, az Észak-Karolinai Egyetem kémiaprofesszora 1972-ben szabadalmaztatta a módszert, amely ma a nevét viseli.[7] A korábbiakkal ellentétben, ez az eljárás nem igényel speciális felszerelést, és a legnagyobb kihívást csupán a piroforos fémporok kezelése, valamint a vízmentes és légmentes környezet megteremtése jelenti. Egyszerűségének köszönhetően a felfedezése nagy figyelmet kapott. Kutatását a Nebraska-Lincolni Egyetemen folytatta. Feleségével, Lorettával 1991-ben megalapították a Rieke Metals LLC-t, amellyel az efféle fémek előállítását tűzte ki célul.[8]

Fordítás

Ez a szócikk részben vagy egészben a Rieke metal című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.

Forrás

  1. 1,0 1,1 1,2 1,3 1,4 1,5 Rieke, R. D. (1989). „Preparation of Organometallic Compounds from Highly Reactive Metal Powders”. Science 246 (4935), 1260–1264. o. DOI:10.1126/science.246.4935.1260. PMID 17832221. 
  2. 2,0 2,1 2,2 Rieke, R. D.; Bales, S. E.; Hudnall, P. M.; Burns, T. P.; Poindexter, G S. (1988). „Highly Reactive Magnesium for the Preparation of Grignard Reagents: 1-Norbornane Acid”. Org. Synth.. ; Coll. Vol. 6: 845
  3. 3,0 3,1 Rieke, R. D.; Wu, T.-C.; Rieke, L. I. (1998). „Highly Reactive Calcium for the Preparation of Organocalcium Reagents: 1-Adamantyl Calcium Halides and Their Addition to Ketones: 1-(1-Adamantyl)cyclohexanol””. Org. Synth.. ; Coll. Vol. 9: 9
  4. (1995) „Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties”. Journal of the American Chemical Society 117, 233–244. o. DOI:10.1021/ja00106a027. 
  5. (1997) „New Organometallic Reagents Using Highly Reactive Metals”. Tetrahedron 53 (6), 1925–1956. o. DOI:10.1016/S0040-4020(96)01097-6. 
  6. (2000) „Low-Temperature Formation of Functionalized Grignard Reagents from Direct Oxidative Addition of Active Magnesium to Aryl Bromides”. Journal of Organic Chemistry 65 (17), 5428–5430. o. DOI:10.1021/jo000413i. PMID 10993378. 
  7. Reuben D. Rieke, Phillip M. Hudnall (1972). „Activated Metals. I. Preparation of Highly reactive magnesium metal”. J. Am. Chem. Soc. 94 (20), 7178–7179. o. DOI:10.1021/ja00775a066. 
  8. (2018): "About Us". Rieke Metals's website, accessed on 2019-03-19.