Hérón-képlet
A geometriában a Hérón-képlet a háromszög területét adja meg a háromszög oldalainak függvényében:
ahol a, b és c a háromszög oldalai, s a háromszög kerületének a fele, és T a háromszög területe. A képletet az alexandriai Hérón vezette be.
Bizonyítás
Elemi
Teljesen elemi (a Pitagorasz-tételre és nevezetes azonosságokra épülő) bizonyítása történhet az általános magasságtétel segítségével.
Trigonometriai
A trigonometriai jellegű bizonyításhoz induljunk ki a koszinusztételből:
illetve abból a képletből, amely a háromszög területét két oldal és a közrezárt szög segítségével fejezi ki:
Ha a fenti képletbe behelyettesítjük a értékét, vagyis
akkor pont a Hérón-képletet kapjuk.
Geometriai

Elég annyit belátni, hogy
mert ebből már következik, hogy
Az ábráról leolvasható, hogy
és
valamint az és derékszögű háromszögek hasonlók. Könnyen igazolható, hogy és , tehát A tétel általánosítása gömbháromszögekre vonatkozóan a l'Huillier-tétel.
Más Hérón-képletek
A következőket szintén szokták Hérón-képletnek nevezni: A húrnégyszög területe
- ,
ahol . Az általános konvex négyszög területe
- ,
ahol s, mint előbb, , és α és γ a négyszög két szemben fekvő szöge. Az egyenlő oldalú tetraéder térfogata:
ahol a, b, c a tetraéder egy lapjának oldalhosszai, és .
Kapcsolódó szócikkek
- Brahmagupta indiai matematikus
Források
- A Matematika Tanítása 2001. 5. szám
- (angolul) Eric W. Weisstein, "Heron's Formula." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HeronsFormula.html